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Abstract
A square lattice directed path confined to a wedge with vertex angle α exerts
an entropic force Fα on the wedge. We show that this is a repulsive force of
magnitude

Fα =




[
1 + cot2 α

(1 + cot α)2

]
log(cot α), if 0 � α < π/4,

0, if π/4 � α � π/2.

This force is determined by examining the combinatorial properties of the
directed path and by determining the exact entropic contribution to the free
energy in the limit as the path length goes to infinite.

PACS numbers: 05.50.+q, 02.10.Ab, 05.40.Fb, 82.35.−x

1. Introduction

Linear polymers, and even single linear polymer chains, have rich physical and thermodynamic
properties that are the consequences of a phase diagram that includes a wide variety of phases,
critical points and critical lines. The phases of a linear polymer are the result of the enthalpic
and entropic contributions to its free energy, and the conformational degrees of freedom of
the polymer makes, in particular, a large entropic contribution to its free energy. These
contributions cannot be ignored and may in some cases make a dominant contribution that
determines the properties of the polymer.

Lattice paths, and in particular directed lattice paths and more general objects such as
the self-avoiding walk, have traditionally been proposed as an appropriate model for linear
polymers [5–7, 16]. Self-avoiding walk models of polymers in confined geometries have
also received considerable attention in the literature [9, 14, 15], and the connection of these
models to conformal field theories enabled the prediction of exact values for some critical
exponents [4, 12]. Directed versions of these models have also been considered (see, for
example, [1, 3, 5]).

0305-4470/05/408493+11$30.00 © 2005 IOP Publishing Ltd Printed in the UK 8493
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Figure 1. A fully directed path in a wedge formed by the Y-axis and the line Y = rX. The angle
α is related to r by cot α = r . The path exerts a repulsive entropic force on the lines bounding the
wedge if the angle has a rational tangent. If the tangent is not rational, then the line never visits
points in the line, but may come arbitrarily close.

In this paper, we are interested in one of the simplest models of a linear polymer in a
constrained geometry: a fully directed path confined to a wedge in the square lattice. The
polymer should exercise a force on the walls of the wedge [2], and we calculate the force in
this model explicitly.

A fully directed path from the origin with steps only in the north (N) and east (E) directions
is the simplest directed model of a two-dimensional polymer. By introducing a line Y = rX

in the square lattice with a directed path, and excluding steps that would take a path below this
line, a model of a directed path confined to a wedge with vertex at the origin is defined by the
Y-axis and the line Y = rX. The wedge angle α is related to r by cot α = r , see figure 1, and
we call the wedge an r-wedge.

Let c(r)
n be the number of directed paths in an r-wedge of length n and which steps from

the origin. In this paper we are interested in the generating function gr = ∑∞
n=0 c(r)

n tn, where
we surpress the argument t by putting gr = gr(t). In some cases gr is exactly known. For
example, if r = 1, then it is not hard to demonstrate that

g1 = 1 − 2t − √
1 − 4t2

2t (2t − 1)
(1)

and it is trivial to see that if r = 0, then g0 = 1/(1 − 2t).
In this paper we show that the radius of convergence of the generating function gr is given

by

tr =




1

2
, if 0 � r � 1,

rr/(1+r)

1 + r
, if r > 1,

(2)

and both the cases, r = 0 or r = 1, have critical value of t equal to 1/2. The expression for
tr is of particular interest since the free energy per vertex of the (infinite length) path can be
computed from tr . One finds that

F r = − log tr = log(1 + r) − r log r

1 + r
(3)

explicitly as a function of r. The derivative of the Fr gives the entropic ‘spring’ force of the
path as the wedge is squeezed by increasing r. In particular, it would be of interest to express
Fr as a function of α, and to examine the force as a function of α.
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Figure 2. The magnitude of the entropic force on line Y = rX in the vertical direction.
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Figure 3. The magnitude of the force as a function of the wedge angle α.

We show that in this model, the magnitude of the repulsive force is given as a function of
r by

Fr =



0, if 0 � r < 1,

log r

(1 + r)2
, if r � 1.

(4)

Fr is maximum when r = 2.093 49 . . . . This value is obtained by solving for the maximum
in Fr using Maple 9; the solution is log r = 1/2 + W(1/

√
4e) where W is the Lambert-W

function. This value of r corresponds to the angle α = 0.445 624 612 . . . , and note that
π/7 = 0.448 798 950 . . . . Thus, the force (in the r-direction) is nearly a maximum if α = π/7
(see figure 2).

In terms of the wedge angle the force becomes

Fα =




[
1 + cot2 α

(1 + cot α)2

]
log(cot α), if 0 � α < π/4,

0, if α � π/4.

(5)

In other words, the repulsive force decreases with increasing wedge angle until it reaches zero
strength at α = π/4. Thereafter, the path exerts no force on the line (see figure 3).
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Since these forces are conservative, one may compute the work performed as a function
of the wedge angle. Direct integration of (5) or (4) shows that the amount of work is

√
2 units

to close the angle from any angle larger than π/4 to zero.
These results are in contrast to a model of self-avoiding walks in a wedge. Let c(α)

n be
the number of self-avoiding walks from the origin of length n, and confined to the wedge in
the square lattice with vertex angle α, and bounded by the Y-axis and the line Y = [cot(α)]X.
Then it is known for any angle α ∈ (0, 2π ] that

lim
n→∞

[
c(α)
n

]1/n = µ2, (6)

and where µ2 = 2.6381 . . . is the growth constant of self-avoiding walks in the square lattice
[8, 13, 14]. Thus, the free energy is independent of α, and there is no net entropic force acting
on the wedge as it is closed in the limit of very long walks. This implies that the wedge can
be forced to arbitrarily small values of the angle α (in fact, one may take α → 0+) without
performing any work.

In section 2 we briefly review Dyck paths. In section 3 we extend our results to paths in
an r-wedge by applying a basic result from recursive iterations to our model, and we show
that the radius of convergence in this model is indeed given by equation (2). The paper is
concluded by some final comments in section 4.

2. Dyck paths

A Dyck path is a fully directed path from the origin in a 1-wedge and is constrained to have its
final vertex in the main diagonal Y = X (see figure 4). Dyck paths are enumerated by Catalan
numbers; if C2n is the number of Dyck paths of length 2n from the origin to the point (n, n)

on the main diagonal, then

C2n = 1

n + 1

(
2n

n

)
. (7)

The generating function of Dyck paths is known to be

g1(t) = 1 − √
1 − 4t2

2t2
= 2

1 +
√

1 − 4t2
. (8)

The generating function of Dyck paths can be determined from a functional recursion for
g1(t): consider figure 4, and note that every Dyck path is either the empty path (a single vertex
at the origin), or is composed of a Dyck path returning for the first time to a vertex v in the
main diagonal and which is then followed by an arbitrary Dyck path. The first part of this path
is a Dyck path, but with endpoints in the superdiagonal Y = X + 1, and with two extra edges
appended to its endpoints to join it to the origin and to the vertex at v. This is generated by
t2g1(t), and is also known as an excursion or as a primitive Dyck path. In terms of g1(t), this
shows that

g1(t) = 1 + [t2g1(t)] · g1(t) = 1 + [tg1(t)]
2 (9)

and by solving this quadratic for g1(t), equation (8) is obtained; for more details and numerous
references to other results and sources, see [10].

3. q/p-Dyck paths

A functional recurrence can be found for the generating function of directed paths from the
origin above or on the line Y = (q/p)X, and with endpoint with coordinates of the type
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Figure 4. A Dyck path. Such a path has a first return (v) to the main diagonal. Thereafter it may
be either empty, or it may continue as an arbitrary Dyck path.

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........................................................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
................................................................

....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
..

O

O

O

O O

O

O O

(2, 5)

Y = (5 /2)X

Figure 5. An example of a q/p-Dyck path. In this case a 5/2-Dyck path is illustrated, and its
length is a multiple of 7.

(Np,Nq). An example of such a path is in figure 5, where p = 2, q = 5 and N = 1. Observe
that the length of such a path is always a multiple of (p +q), and that the fraction of horizontal
edges is p/(p + q). These paths are called q/p-Dyck paths.

Define the number Eq/p of q/p-Dyck paths of length (p + q). Thus, paths counted by
Eq/p are q/p-Dyck paths from the origin and ending in the vertex with coordinates (p, q).
These paths are all those q/p-Dyck paths of minimal positive length. The path in figure 5 is
a 5/2-Dyck path of length (2 + 5) = 7, and is counted by E5/2.

Consider the sequence (pn, qn) of pairs of positive and relative prime integers, and suppose
that

lim
n→∞

qn

pn

= r (10)

where r is a non-negative real number. Then one is interested in the number Eqn/pn
. The

following theorem can be found in [11].
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Figure 6. A q/p-Dyck path has a first return • to the line Y = (q/p)X, and may continue after
this return as an arbitrary q/p-Dyck path. The path between the origin and the first return is a
p/q-excursion or a primitive path. Every p/q-Dyck path is either the path composed of one vertex,
or is a q/p-excursion followed by an arbitrary q/p-Dyck path. This observation gives a functional
recurrence for the generating function gq/p(t) of q/p-Dyck paths.

Theorem 3.1. Suppose that (pn, qn) are pairs of positive and relative prime integers, and that
the ratios qn/pn → r , where r is a non-negative real number. Then the sequence

〈
E

1/(pn+qn)

qn/pn

〉
has a limit, and moreover,

lim
n→∞ E

1/(pn+qn)

qn/pn
= 1 + r

rr/(1+r)
.

4. A recurrence for gq/p

Fix (p, q) relative prime to one another, and consider q/p-Dyck paths. We call a q/p-Dyck
path with only two vertices in the line Y = (q/p)X a q/p-excursion.

Observe that each q/p-Dyck path has a first return to the line Y = (q/p)X, and after that,
it either terminates, or it continues as an arbitrary q/p-Dyck path. This can be understood by
considering, for example, figure 6. On its first return to the line Y = (q/p)X the path may
continue until it terminates in a final vertex. The initial part of the path, until the first return, is
a q/p-excursion. This observation shows that each q/p-Dyck path is either the empty path, or
is a q/p-excursion followed by an arbitrary q/p-Dyck path. In other words, if the generating
function of q/p-Dyck paths is gq/p and eq/p is the generating function of q/p-excursions,
then

gq/p = 1 + eq/pgq/p. (11)

The generating function for excursions is not generally known, but one can show that the
recurrence

gq/p = 1 + Eq/p[tgq/p]p+q (12)

generates a subclass of q/p-Dyck paths. On the other hand, the recurrence

gq/p = 1 +

(
p + q

q

)
[tgq/p]p+q (13)

generates a class of objects that includes all q/p-Dyck paths. Following the arguments in
[11], one may instead consider a recurrence of the kind

gq/p = 1 + Fq/p[tgq/p]p+q (14)
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where Fq/p is a constant and is bounded by

Eq/p � Fq/p �
(

p + q

q

)
. (15)

Consider therefore the recurrence in equation (14). The radius of convergence tq/p of
gq/p may be found from recurrence (14) by considering the following iterations, both derived
from it. Fix t and choose gq/p[0] as an initial guess of gq/p. Solve for gq/p from equation (14)
in two ways to set up the iterative schemes

gq/p[N + 1] = Fq/p[tgq/p[N ]]p+q + 1, for N = 1, 2, 3, . . . , given gq/p[0], (16)

and

gq/p[N + 1] = 1

t
[(gq/p[N ] − 1)/Fq/p]1/(p+q), for N = 1, 2, 3, . . . , given gq/p[0].

(17)

These recurrences may be written in simplified fashion by defining the functions

f−(x) = Fq/p(xt)p+q + 1, and f+(x) = 1

t

(
x − 1

Fq/p

)1/(p+q)

, (18)

in which case the recurrences are gq/p[N + 1] = f±(gq/p[N ]) for N = 1, 2, 3, . . . for given
gq/p[0] and fixed values of t ∈ (0,∞).

Observe that the recurrence gq/p[N + 1] = f−(gq/p[N ]) generates a power series in t,
and we expect it to be convergent if t < tq/p, where tq/p is the radius of convergence of
the generating function gq/p. On the other hand, the recurrence gq/p[N + 1] = f+(gq/p[N ])
generates a power series in 1/t , and so it should be convergent for values of t > tq/p. When
these recurrences are convergent for a given choice of t, then one may suppose that there are
fixed points g−

q/p and g+
q/p respectively:

g−
q/p = f−(g−

q/p), and g+
q/p = f+

(
g+

q/p

)
. (19)

By the fixed-point theorem, the recurrences will converge to fixed points if for both f− and
f+, it is the case that∣∣∣∣df±

dg

∣∣∣∣
g=g±

q/p

< 1, (20)

and for appropriate choices of the initial guess gq/p[0]. This implies certain conditions on the
choice of t in the recurrences; in particular, it shows that for f−,

tp+q <
1

Fq/p(p + q)[g−
q/p]p+q−1

, (21)

and for f+,

tp+q >
1

Fq/p(p + q)p+q
[
g+

q/p − 1
]p+q−1 . (22)

These bounds on t give critical values for t in each of the two recurrences. We plot a
representative critical value for the case p = 2 and q = 3 in figure 7 against g. Curve B
corresponds to the critical value of t in equation (21); for values of t in the region below this
curve the recurrence gq/p[N + 1] = f−(gq/p[N ]) will converge. Curve A corresponds to the
critical value of t in equation (22). Values of t above this curve will give convergence in the
recurrence gq/p[N + 1] = f+(gq/p[N ]).
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Figure 7. The curves 1/[Fq/p(p+q)gp+q−1] and 1/[Fq/p(p+q)p+q (g−1)p+q−1] plotted against g
(see equations (21) and (22)) where we chose p = 2 and q = 3 while F3/2 was taken to be equal to
2. The recurrence gN+1 = f−(gN ) is convergent if the value of tp+q is below the curve marked by
B; the dotted curve is the numerical solution of the recurrence gN+1 = f−(gN )—with increasing
t; this curve converges on the critical point at (g∗

q/p, tq/p). The recurrence gN+1 = f+(gN ) is
convergent in the region above the curve marked by A. If t = tq/p , then both recurrences have the
same fixed point g = g∗

q/p ; this can be checked by substituting tq/p and g∗
q/p into equation (14).

Since the recurrence gN+1 = f−(gN ) generates a power series for gp/q in t, and it is divergent if
g = g∗ and t > tq/p , we deduce that the radius of convergence of gp/q is tq/p .

The intersection of the two critical curves in figure 7 gives the point (g∗, t∗) as a potential
fixed point for the functional recurrence in equation (14). Solving directly for g∗

q/p in

t
p+q

q/p = 1

Fq/p(p + q)[g∗
q/p]p+q−1

= 1

Fq/p(p + q)p+q[g∗
q/p − 1]p+q−1

(23)

gives the result that

g∗
q/p = p + q

p + q − 1
. (24)

One may then determine the corresponding value for tq/p:

t
p+q

q/p = (p + q − 1)p+q−1

Fq/p(p + q)p+q
. (25)

Direct substitution of (g∗
q/p, tq/p) into the functional recurrence (14) proves that for t = tq/p,

the fixed point is indeed g∗
q/p as given in equation (24). Since g = g∗

q/p is the fixed point when
t is in the critical curve in equation (21), we conclude that tq/p is the radius of convergencex
of gq/p.

This gives the following lemma.

Lemma 4.1. Consider the generating function gq/p of paths generated by the functional
recurrence

gq/p = 1 + Fq/p[tgq/p]p+q .

Then the radius of convergence of gq/p is

tq/p = (p + q − 1)(p+q−1)/(p+q)

F
1/(p+q)

q/p (p + q)

and moreover, g∗
q/p = gq/p(tq/p) = (p + q)/(p + q − 1).



Forces in square lattice directed paths in a wedge 8501

The important fact in this lemma is that g∗
p/q is independent of Fq/p, and since Fq/p is

bounded as in equation (15), there is also a bound on the critical value tq/p.

5. Directed paths in an r-wedge

The results in the last two sections can now be used to examine directed paths in an r-wedge.
Let r be an irrational number and suppose that 〈(pn, qn)〉 is a sequence of positive and relative
prime integers such that both qn/pn > r and limn→∞ qn/pn = r .

Let c(r)
n be the number of fully directed paths from the origin confined to the r-wedge of

length n, and define the generating function

gr =
∞∑

n=0

c(r)
n tn. (26)

Clearly, gqn/pn
� gr since qn/pn > r . Thus, the radius of convergence of gr is less than or

equal to tqn/pn
; in other words tr � tqn/pn

for each value of n. Observe that tr � 1/2 for any r,
since the number of directed paths grows as 2n.

On the other hand, each path counted by c(r)
n has at most �n/(1 + r)	 horizontal edges.

Hence

c(r)
n �

� n
1+r

	∑
m=0

( n

m

)
. (27)

Take the 1/n-power of this and let n → ∞. This shows that

lim
n→∞

[
c(r)
n

]1/n �




2, if r � 1,

1 + r

rr/(1+r)
, if r > 1.

(28)

This shows that tr � 1/2 if r ∈ [0, 1], and tr � rr/(1+r)/(1 + r) if r > 1. These arguments
give the theorem.

Theorem 5.1. Let r � 0 be a real number. The radius of convergence of the generating
function gr of fully directed paths in an r-wedge is

tr =




1

2
, if r � 1,

rr/1+r

1 + r
, if r > 1.

Proof. Observe that tr is increasing with r. Since g1 = ∑
n�0 c(1)

n tn is given in equation (1),
one may directly check that t1 = 1/2. Since tr � 1/2, the result is that tr = 1/2 for all
r ∈ [0, 1].

Let r > 1 now be an irrational number and suppose that 〈(pn, qn)〉 is a sequence of
positive and relative prime integers such that both qn/pn > r and limn→∞ qn/pn = r . We
argued that tr � tqn/pn

, and by lemma 4.1,

tr � tqn/pn
= (pn + qn − 1)(pn+qn−1)/(pn+qn)

F
1/(pn+qn)

qn/pn
(pn + qn)

,

provided that Fqn/pn
is chosen equal to its lower bound in equation (15).
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Take n → ∞, and use the result in theorem 3.1 and in equation (15) to compute the limit
of F

1/(pn+qn)

qn/pn
. This gives

tr � rr/(1+r)

1 + r

for any irrational r > 0. On the other hand, by equation (28) the opposite inequality is also
valid if r > 1.

These arguments fix the value of tr if r > 0 is irrational. Thus, tr may be extended to a
measurable function defined on real numbers. The result is a continuous and differentiable
function. This proves the theorem. �

This theorem proves the claim in equation (2).

6. Conclusions

In this paper we have considered the generating function of fully directed paths in an r-wedge.
We were particularly interested in the entropic force of the path on the wedge walls. We
determined an explicit formula for the magnitude of the force and plot it in figures 1 and 2.
It is interesting to note that the resultant force is zero whenever the wedge angle is larger
than π/4.

Forces in fully directed paths in confined geometries have also been determined by Brak
et al [2]. The net entropic force of a fully directed path confined to a strip of width w is
given by

F s
w = π tan(π/(w + 2))

(w + 2)2
(29)

and it falls off as an inverse cube of w as w → ∞: F s
w = π2/w3 + O(w−4) for large w. In a

wedge with wedge angle α, the behaviour of Fα in equation (5) is also of interest as α → 0+.
Examination of our results show that the magnitude of the force diverges logarithmically with
α as α → 0:

Fα = −log α + α log α2 + O(α2 log α), as α → 0+. (30)

Similar results have been obtained for Motzkin paths and partially directed paths in a
wedge, and results will be presented in a future publication.
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